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Abstract. The influence of randomly quenched disorder in the incommensurate phases
of Rb2(Zn1−xCux)Cl4 (for x = 0.03), Rb2(Zn1−xCdx)Cl4 (for x = 0.03 and 0.05),
Rb2(Zn1−xHgx)Cl4 (for x = 0.03 and 0.05) and Rb2Zn(Cl1−xBrx)4 (for x = 0.01 and 0.03)
is investigated via the amplitudon and phason dynamics using35Cl nuclear quadrupole resonance
studies. Defect pinning at the metal and halogen sites in the prototype compound Rb2ZnCl4 has
been attempted for the first time and has yielded novel results. Quenched randomness at the metal
site (Zn) in Rb2ZnCl4 induced strong pinning of the modulation wave (irrespective of the size
of the dopant compared to the host). This is evident from a temperature-independent1φ and
consequentlyT1φ unlike the case for impurity pinning at the other sites (cation and anion). The
effect is enhanced with increasing concentration of the dopant. This result is contrasted with defect
pinning at the halogen site (Cl) in Rb2ZnCl4 with Br substitution which induced weak pinning of
the modulation wave (temperature-dependent1φ and consequentlyT1φ) similarly to substitution
at the cation site as seen from earlier studies. Furthermore, the impurities have been categorized
asrandom-fieldor random-potentialtype by evaluating the symmetry parameter(m) associated
with the impurity. It is seen that Cu, Cd and Hg arerandom-field-type impurities inducing strong
pinning of the modulation wave (m < 6; m = 6 for Rb2ZnCl4) while the Br impurity is of a
random-potentialtype inducing a weak pinning of the modulation wave.

1. Introduction

The order parameter excitation spectrum of incommensurate systems consists of an acoustic-
like phason branch and an optic-like amplitudon branch. According to the continuum theory
in the plane-wave limit (PWL) [1], the phason is gapless in the absence of any pinning and
represents the Goldstone mode recovering the broken translational symmetry (of the free
energy) of the incommensurate (IC) phase. Development of incommensurate order with
decreasing temperature in this phase leads to the breakdown of the plane-wave approximation
and the realization of phase solitons (domain walls separating essentially commensurate
regions) [2, 3]. The discrete nature and defects of the lattice, as well as the presence of
quenched disorder, could have profound effects on the development of the multi-soliton lattice
close to the lock-in transition [2, 3]. Any phase-pinning perturbation will introduce a gap
in the phason spectrum, and defects are expected to have a strong influence on the pinning
scenario.
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The symmetry properties of the dopant are known to play an important role in determining
the properties of the incommensurate phase [4]. In this context, doping of Rb2ZnCl4 at the
cation site with symmetry-non-breaking ions (like K) [5] smaller in size compared to the
host cation have only a subtle effect on the transition temperatureTI , while in the presence
of a heavier cation (Cs) bothTI andTC are considerably suppressed, with the effect being
enhanced with increasing impurity concentration [6]. On the other hand, doping studies
with symmetry-breaking ions have been very scarce on the otherwise widely investigated
compound Rb2ZnCl4. 35Cl NQR studies on NH+4 doping at the cation site in Rb2ZnCl4 have
been reported [7–9]; the doping suppressedTC considerably and induced Devil’s staircase
behaviour in the multi-soliton limit. Studies of the incommensurate phase with doping at
the metal and halogen sites in Rb2ZnCl4 have not been attempted so far to the best of our
knowledge. Such a study has been taken up in the present work to investigate the effect of
the site of occupation and size of the dopant in Rb2ZnCl4 so as to allow us to compare the
results with those for the doping of cations of different sizes in the same system [8, 10, 11].
It was reported earlier in an x-ray study on the A2ZnCl4 systems [12] that substitution at the
metal site distorts the basic tetrahedron (ZnCl4) itself. As the geometry of the tetrahedron
(ZnCl4) influences the onset of a transition to the incommensurate phase [13], it could lead to
very specific and interesting effects. Also the rotational dynamics of the anion is known to be
crucially involved in mediating the paraelectric–incommensurate transition in Rb2ZnCl4 [14].
The geometry of the (ZnCl4)2− anions being perturbed by substitution at the halogen site in
the present work could perhaps lead to interesting results regarding the dynamic processes in
the incommensurate phase. In this context, Br substitution at the Cl site in Rb2ZnCl4 has been
attempted here, along with doping of Cu, Cd and Hg (at various concentrations) at the Zn site
in Rb2ZnCl4.

2. Experimental details

Rb2(Zn1−xCux)Cl4 (for x = 0.03), Rb2(Zn1−xCdx)Cl4 (for x = 0.03 and 0.05),
Rb2(Zn1−xHgx)Cl4 (for x = 0.03 and 0.05) and Rb2Zn(Cl1−xBrx)4 (for x = 0.01 and 0.03)
are grown by the slow evaporation of stoichiometrically prepared aqueous solutions. Doubly
recrystallized polycrystalline samples are used. Of the three35Cl NQR lines observed for
all of the samples in the high-temperature paraelectric phase, the line corresponding to the
highest frequency(ν1) can be most conveniently tracked into the incommensurate phase, as
it is broadened by about 100 kHz as compared to the broadening of about 500 kHz of the
other two lines, making their observation difficult. Hence all measurements are carried out
on the high-frequency line (ν1). For all of the compounds, belowTI , three singularities (ν+,
ν− andνφ) of the otherwise inhomogeneously broadened NQR line are observed throughout
the incommensurate phase. Measurements on the temperature dependence of the singularities
(ν+, ν− andνφ) are carried out applying narrow-band excitations of the different spin packets
by applying longer rf pulse widths (typically aπ/2 pulse width is about 80µs). For recording
the singularities in the incommensurate phase, the excitation frequency is increased in steps of
2 kHz over a band of 100 kHz on either side of the extrapolated high-temperature frequency,
with averaging carried out over 1024 acquisitions. While a spin echo is used to locate the
singularities, an inversion-recovery spin-echo sequence (π–τ–π/2–τ ′–π ; τ ′ = 180µs) is
used to measure the quadrupolar spin–lattice relaxation times (T1Q). The accuracy in the
measurement of the frequency is within±1.5 kHz, while it is within 5% forT1Q. A gas-flow-
type cryostat with liquid nitrogen vapour is used for temperature variation with a stability of
±0.5 K over two hours.
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3. Theory

NQR spectroscopy is perhaps the most extensively used technique for studying phase
transitions in structurally incommensurate phases as the resonance frequency varies in space
reflecting the spatial variation of the incommensurate modulation. In incommensurate systems
there are essentially an infinite number of non-equivalent nuclear sites that contribute to the
resonance spectrum, resulting in a quasi-continuous distribution of the resonance frequency
[1]. Due to this modulation there is a bunching of spins on the frequency axis giving rise to
singularities on the resonance line.

3.1. The NQR line shape

Considering the modulation in the plane-wave limit (PWL, when the phase of the modulation
is a linear function of the displacement) and the local case: when the wavelength of the
incommensurate modulation is large compared to the region from which the dominant
contribution to the NQR frequency arises, the resonance frequencyν at a given lattice site
can be expanded in a power series in the displacement fieldu [15, 16] as

ν = ν0 + a1u +
1

2
a2u

2 + · · · (1)

whereν0 is the NQR frequency at the transition temperatureTI andu = A cosφ(x), where
A is the order parameter for the paraelectric–incommensurate transition andφ is the phase of
the incommensurate modulation wave. Thus,

ν = ν0 + ν1 cosφ +
1

2
ν2 cos2 φ + · · · (2)

whereν1 ∝ A andν2 ∝ A2 etc. In the incommensurate phase, cosφ takes continuously all
values from +1 to−1. The frequency distribution in the plane-wave limit is defined as [16]

f (ν) = constant

dν/dφ
. (3)

The spectral densityf (ν), which is an inhomogeneous line shape, will be peaked or have
singularities whenever dν/dφ→ 0. If the site symmetry of the nucleus in the high-temperature
phase is such that the linear and quadratic terms in equation (2) are taken into account, three
distinct singularities are obtained when|ν1| 6 |ν2|. The edge singularities corresponding to
maximum displacement of the modulation wave(cosφ = ±1) will arise at [1, 16]

ν± = ν0 ± ν1 +
1

2
ν2 (4)

while the other singularity corresponding toν1 + ν2 cosφ = 0 will arise at

νφ = ν0 − ν2
1

2ν2
. (5)

Furthermore, the frequency and width ofνφ will be independent of temperature while the edge
singularities will be temperature dependent. Theνφ-singularity arises due to the non-linearity
in the relation between the resonance frequency and the order parameter. The splitting between
the edge singularities at any temperatureT is given by [1, 16]

1ν = ν+ − ν− = 2ν1 ∝ A ∝ (TI − T )β (6)

where β is the critical exponent associated with the order parameter characterizing the
transition.
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3.2. Nuclear spin–lattice relaxation

Since the energy of the incommensurate phase in the continuum limit is independent of the
phase of the incommensurate modulation wave, these systems have phason branches which
dominate the relaxation mechanisms [1]. In contrast to the case for periodic systems, the spin–
lattice relaxation time (T1Q) will vary over the inhomogeneously broadened NQR line and
allow for a separate estimation of the phason and amplitudon contributions [1, 16]. The spin
transition probabilities,W(µ), for thelth nucleus due to the amplitudon and phason excitations
in the ‘local’ approximation [16] and mediated via direct one-phason and one-amplitudon
relaxation processes are given by [1]

W(µ) = constant×
[
cos2 φ(xl) J

(µ)

A (ω) + sin2 φ(xl) J
(µ)
φ (ω)

]
(7)

whereJ (µ)A andJ (µ)φ are the local spectral densities of the auto-correlation functions of the

amplitudon and phason fluctuations, respectively. In the PWL,J
(µ)
φ is found to be temperature

independent in the high-temperature part of the incommensurate phase in Rb2ZnCl4, whereas
J
(µ)

A decreases with decreasing temperature [17]. Amplitudons will dominate relaxation for
nuclear sites where cos2 φ(xl) = 1 and hence at the edges of the spectrum. The phasons
will dominate the relaxation for nuclear sites with cos2 φ(xl) = 0, and hence in the centre of
the spectrum. From the transition probabilities, the amplitudon and phason contributions to
the relaxation rates,(T1A)

−1 and(T1φ)
−1 respectively, can be evaluated. The effective spin–

lattice relaxation rate over the inhomogeneous frequency distribution for direct processes can
be written as

T −1
1 = X2T −1

1A + (1−X2)T −1
1φ (8)

whereX = cosφ.

3.3. The phason gap

In the PWL, the phason branch has an acoustic-like dispersion and is gapless in the absence
of pinning. Any pinning of the modulation wave to the underlying lattice due to the presence
of discrete-lattice effects or the presence of impurities will introduce a gap1φ in the phason
spectrum as [1, 16]

ω2
φ = 12

φ +Kk2 (9)

whereωφ is the phason frequency andk is the wave vector associated with the modulation
wave. Relaxation measurements directly give an estimate of the phason gap1φ from a known
amplitudon gap1A [18]. For direct one-phonon processes in the plane-wave regime, large
frequency-dependent phason- and amplitudon-induced spin–lattice relaxation rates are given
by [1]

T −1
1φ = C

π

4
k−3/2 0φ

1φ

(10)

T −1
1A = C

π

4
k−3/2 0A

1A

(11)

whereC is a constant proportional to the square of the fluctuating EFG tensor, and0φ and0A are
the phason and amplitudon damping constants, respectively. In the mean-field approximation,
1A represents the temperature-dependent energy gap in the amplitudon spectrum and is given
by [16]

1A ∝ K2

√
TI − T . (12)
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Here,1A is of the order of a phonon frequency at temperatures different fromTI , and
since0φ = 0A = 0 andωQ � 0 � 1A, the relaxation times due to the amplitudon and
phason fluctuations can be written as

T1φ

T1A
= 1φ

1A

. (13)

Thus the measurement ofT1φ and T1A in the incommensurate phase allows for a
determination of the phason gap1φ in terms of a known amplitudon gap1A. The temperature
dependence of1A can be obtained by fitting the corresponding relaxation time data to

T1A = K11A ∝ K1K2

√
(TI − T ). (14)

From the neutron scattering measurements for Rb2ZnCl4, the amplitudon gap was estimated
to be 0.256×1012 s−1 [19] which corresponds to aT1A-value of 15 ms [8]. Using these values,
K1 was found to be 58.594× 10−12 s2. The temperature dependence of the amplitudon gap
in the various compounds investigated here is calculated from equation (14) and that of the
phason gap from equation (13).

4. Results

Three singularities (ν+, ν− andνφ) are observed in all of the compounds with doping at the
metal site (Rb2(Zn1−xBx)Cl4; B ≡ Cu for x = 0.03, Cd forx = 0.03 and 0.05 and Hg
for x = 0.03 and 0.05) and at the halogen site i.e., in Rb2Zn(Cl1−xBrx)4 for x = 0.01 and
0.03, as in the pure Rb2ZnCl4 sample. The separation between the singularities increases
with decreasing temperature as expected from equation (6). The temperature variations of the
singularities in the above compounds are shown in figures 1 to 7 respectively. The solid curves
in these figures show the fit of the data to1ν ∝ (TI −T )β . The values of the critical exponent
β so obtained from the fits is 0.35±0.01 for all of these compounds (table 1) and is the same as
for the pure compound(≈0.35) indicating that the critical behaviour of the modulation wave

Table 1. Variation of transition temperatures (TI andTC ), critical exponent(β), phason gap1φc
atTC and the symmetry parameter(m) with impurity doping.

Compound TI (K) TC (K) β 1φc (1011 s−1) m

Rb2ZnCl4 302 192 0.34 0.21 6

Rb2(Zn1−xCux )Cl4

x = 0.03 303 190 0.34 0.42 5

Rb2(Zn1−xCdx )Cl4

x = 0.03 305 185 0.34 0.61 4

x = 0.05 308 180 0.34 0.90

Rb2(Zn1−xHgx )Cl4

x = 0.03 305 184 0.34 0.60 4

x = 0.05 308 180 0.34 0.91

Rb2Zn(Cl1−xBrx )4

x = 0.01 300 188 0.35 0.80 6

x = 0.03 293 180 0.35 1.04
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Figure 1. The temperature variation of the singularities in Rb2(Zn1−xCux )Cl4; for x = 0.03.

Figure 2. The temperature variation of the singularities in Rb2(Zn1−xCdx )Cl4; for x = 0.03.

remains the same. A few degrees aboveTC a fourth singularity line, the intensity of which
increases with decreasing temperature, is observed, while the intensities of the other three lines
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Figure 3. The temperature variation of the singularities in Rb2(Zn1−xCdx )Cl4; for x = 0.05.

Figure 4. The temperature variation of the singularities in Rb2(Zn1−xHgx )Cl4; for x = 0.03.

start decreasing. The observation of this additional singularity indicates the formation of the
multi-soliton lattice. The lock-in transition,TC , is characterized by the disappearance of the
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Figure 5. The temperature variation of the singularities in Rb2(Zn1−xHgx )Cl4; for x = 0.05.

Figure 6. The temperature variation of the singularities in Rb2Zn(Cl1−xBrx )4; for x = 0.01.

νφ-singularity and a jump in the value ofT1φ (see figures 8–11). The number of lines observed
in the low-temperature commensurate phase is again three. The transition temperaturesTC ,
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Figure 7. The temperature variation of the singularities in Rb2Zn(Cl1−xBrx )4; for x = 0.03.

Figure 8. The temperature dependence of the spin–lattice relaxation timeT1Q in the IC phase of
Rb2ZnCl4 and Rb2(Zn1−xCux )Cl4 with x = 0.03.
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Figure 9. The temperature dependence of the spin–lattice relaxation timeT1Q in the IC phase of
Rb2ZnCl4 and Rb2(Zn1−xCdx )Cl4 with x = 0.03 andx = 0.05.

Figure 10. The temperature dependence of the spin–lattice relaxation timeT1Q in the IC phase of
Rb2ZnCl4 and Rb2(Zn1−xHgx )Cl4 with x = 0.03 andx = 0.05.
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Figure 11. The temperature dependence of the spin–lattice relaxation timeT1Q in the IC phase of
Rb2ZnCl4 and Rb2Zn(Cl1−xBrx )4 with x = 0.01 andx = 0.03.

which are approximately the temperatures whereT1φ starts increasing steeply, are given in
table 1. The variations ofT1A andT1φ in Rb2(Zn1−xBx)Cl4 (B ≡ Cu for x = 0.03, Cd for
x = 0.03 and 0.05 and Hg forx = 0.03 and 0.05) and in Rb2Zn(Cl1−xBrx)4 for x = 0.01 and
0.03 are shown in figures 8 to 11, respectively. The phason gaps(1φ) in these compounds
have been estimated from equations (12), (13) and (14). The variations of1φ with temperature
for the above compounds are shown in figures 12 to 15, respectively. Close toTC the plane-
wave model breaks down and an observed steep increase inT1φ indicates the formation of the
multi-soliton lattice. The increase inT1φ and its temperature dependence is associated with
the splitting of the phason spectrum into an acoustic-like mode (q < a, whereq is the wave
vector associated with the modulation wave anda the width of the commensurate domain)
and an optic-like(q > a) mode [1, 16]. As the commensurate regions become large (with
increasing inter-soliton distance), the contributions toT1φ from the optic-like mode increase
and, at the transitionTC , the contribution from the acoustic-like phason branch becomes zero.
At TC , the values of the phason gap1φc for all of the compounds are given in table 1.

5. Discussion

5.1. The role of impurities in the dynamics of the incommensurate phase

The influence of defects and thermal fluctuations on the dynamics of the incommensurate
modulation wave nearTC was studied earlier and the deviations from the Landau theory
were explained in terms of an intermediate defect-dominated phase described with a model
of random internal fields [20]. The transition atTC in the constant-amplitude approximation
(CAA) is a continuous one but may become discontinuous if amplitude variations are taken
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Figure 12. The temperature dependence of the phason gap in the IC phase of Rb2ZnCl4 (x = 0.0)
and Rb2(Zn1−xCux )Cl4; for x = 0.03.
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Figure 13. The temperature dependence of the phason gap in the IC phase of Rb2ZnCl4 (x = 0.0)
and Rb2(Zn1−xCdx )Cl4; for x = 0.03 andx = 0.05.

into account [21]. Close toTC , the discreteness of the lattice becomes important and may
induce a regime of chaotic states [22]. Also a number of experiments [23–26] show that
TC is strongly influenced by the presence of impurities. Thermal fluctuations also strongly
influence the impurity pinning effects [27–29] by substantially reducing the pinning energy.
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Figure 14. The temperature dependence of the phason gap in the IC phase of Rb2ZnCl4 (x = 0.0)
and Rb2(Zn1−xHgx )Cl4; for x = 0.03 andx = 0.05.
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Figure 15. The temperature dependence of the phason gap in the IC phase of Rb2ZnCl4 (x = 0.0)
and Rb2Zn(Cl1−xBrx )4; for x = 0.01 andx = 0.03.

Before reachingTC from above, the system will enter the region where the incommensurate
structure is dominated by defects. The transition from one chaotic state to another takes
place when the discommensuration pinning energy (per unit surface) becomes comparable
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to the strength of the discommensuration interaction. Below this transition temperature
the discommensurations will be pinned at random by the impurities. Characteristic of this
intermediate defect-dominated chaotic phase, which can extend well belowTC , is the existence
of metastable states [22].

An elaborate and comprehensive review of the theoretical models concerning the influence
of impurities in incommensurate systems is given by Prelovsek [4]. Theoretical results con-
cerning the destruction of long-range incommensurate order, the influence of impurities on the
low-frequency dynamics and on the lock-in transition, as well as hysteresis effects induced by
impurities were discussed. The free-energy density functionalf1 can be generalized for a mixed
system by adding a kinetic energy term [11]. The complex order parameterQ = A exp(iφ)
is assumed to vary only in the phaseφ, so the change in the energy density,1f1, in the
constant-amplitude approximation can be expressed as [11]

1f1 = −δA∂φ
∂x

+
1

2
κA2 |∇φ|2 − γAn cos(nφ)− 1

2
µA2φ̇2 (15)

whereA is the amplitude andφ is the phase of the incommensurate modulation wave;n is
the symmetry index,µ the effective density of phase oscillations,δ the Lifshitz parameter,κ
the elastic constant andγ the anisotropy parameter. In the above equation the Lifshitz term
drives the incommensurate modulation atT = TI , while the anisotropy term induces a lock-in
transition atT = TC . The elastic term is assumed to be isotropic. Quenched disorder or frozen
impurities can be classified according to their symmetry properties relative to the reference
commensurate phase. Only defects which couple to the phaseφ of the incommensurate
modulation wave are important [4].

Random-fieldimpurities will act as random fields on the commensurate order parameter
discriminating among then possible commensurate domains with phasesφl whereφl = 2φl/n
(l = 1, n) for γ > 0. They can be realized by coupling to the order parameter asQm,m < n.
Random interactions, also referred to asrandom potentials, do not break the symmetry of
the functional, i.e., they do not discriminate among the different commensurate domains but
change the anisotropy strengthγ → γ +1γ locally [4]. Impurities which locally change the
elastic constantκ and couple to the phase derivative also fall into this category. In the case of
random-potential-type impurities, the phase deviation from the plane-wave solution induced
at any pointr by stationary impuritiesψ = φ − qr is determined by the functional where the
change in the energy density is given by

1f = 1

2
κA2 |∇ψ |2 −1γ An cos[n(qr +ψ)] |q| = κ/δ. (16)

In the weak-pinning regime,ψ cannot adjust itself maximally to the impurity separately
because of the strong elastic term restricting variations inψ . Adjustments will take place on
a larger scale, over a domain sizeL0 within which |1ψ | < π/m. In the strong-pinning limit
the potential term is locally optimized, so for each impurity site atr, q0r + ψ(ri) ≈ 2πk/m.
For the weak-pinning case, assuming that1γ = 1γ0 in the vicinity (R < R0) of the defect
and1γ = 0 for R > R0, the average distance between defectsL0 is much larger thanR0,
i.e.L0 = (ni)−1/3 � R0 with ni being the defect ion concentration. Within, the defect range
(R < R0) we haveψ = ψ0, whereasψ = ψ0R0/R for R > R0. For1γ/γ < 1, the phase
deviation induced by the defect remains small,ψ0 < π/n (for the symmetry-non-breaking
impurity wherem = n) over the whole incommensurate phase. With thisansatzthe free-energy
difference per defect, from equation (15), becomes

1F = 1

2
κA2R0 2πψ2

0 + nAn 1γ0V0 sin(nqr)ψ0 (17)
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whereV0 = 4πR3
0/3. The temperature dependence of the phason gap induced by an impurity

with symmetrym characterizing it as eitherrandom-fieldor random-interactiontype is given
by [4]

1φ ∝ (TI − T )β(m−2) (18)

(m = n = 6 for the symmetry-non-breaking impurity, as in pure Rb2ZnCl4). On the other
hand, for a strongrandom-field-like pinning by the defect,L0 ≈ (1/ni)1/3, so the gap is
1φ ≈ cπ/L0 = (κ/µ)1/2πn1/3

i wherec is the phason velocity, independent of temperature.
Thus it is seen that the symmetry parameterm characterizing the impurity can characterize the
defect as symmetry non-breaking or otherwise and has been found by fitting the data nearTI
to equation (18) wherein a constant term is added to1φ in equation (18) to account for the
contributions to the phason gap arising from discrete-lattice effects and defects present even
in the pure system (for Rb2ZnCl4,m = 6).

The influence of phase fluctuations of the modulation wave on the NQR line shape can
be evaluated using certain simplified models for the motions of the modulation wave. A
reasonable model [30] is that in which the phase fluctuations are represented by standing
waves within an average coherence volumeVC . In the strong-pinning regime, where the
phase of the modulation wave between pinning centres can fluctuate freely,VC = 1/ni , ni
being the impurity concentration. ThenVC is independent of temperature and hence1φ and
consequentlyT1φ are independent of temperature. In the weak-pinning regime, the system is
assumed to separate into domains [31]. Within each of these domains, the impurity-induced
phase distortion varies slowly and takes random values in different domains. The phase of
the modulation wave is fluctuating freely within each domain and the coherence volumeVC
is identified with the domain volume. In this case,VC is temperature dependent [30] and
henceT1φ , through1φ and its temperature dependence, will be given by equation (18). Close
to TI , even in the case of impurities that have strong-pinning natures, the order parameter
of the incommensurate phase itself will be very small. As such, the coherence volume
becomes temperature dependent, signalling the onset of the weak-pinning regime. Under
these assumptions, the symmetry parameter(m) has be evaluated as in the weak-pinning case
using equation (18).

5.2. Defect pinning at the metal site in Rb2ZnCl4

The temperature dependence of the observed singularities (ν+, ν− and νφ) in all of the
compounds with doping of Cu, Cd or Hg at the metal (Zn) site in Rb2ZnCl4 gaveβ-values
identical to that for the pure system, as seen from table 1. This shows that the singularities in
these systems develop similarly to that in the pure system. It is seen from figures 8–10 that
doping with Cu (smaller than Zn), Cd or Hg (both of which are bigger than Zn) leads to an
increase ofT1φ and hence an enhancement of1φ (increasing with increase in the concentration
of the dopant). It is also seen thatT1φ , which rises sharply within the few degrees belowTI ,
is independent of temperature thereafter throughout the incommensurate phase. It picks up a
temperature dependence only very close to the lock-in transition temperatureTC . T1A, on the
other hand, follows a very similar critical temperature dependence to that for pure Rb2ZnCl4.
As discussed earlier, such a temperature-independentT1φ (observed with Cu, Cd or Hg doping
at the Zn site) is indicative of the strong-pinning nature of the substituted impurity. This could
be visualized as follows: between the pinning centres the phase fluctuations fluctuate freely
and can be represented by standing waves within an average coherence volume. And this
coherence volume is independent of temperature, leading to a temperature-independent1φ

and consequentlyT1φ . The increases in1φ due to Cu, Cd or Hg doping from that for pure
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Rb2ZnCl4 are shown in figures 12–14 respectively. As seen from figures 12 and 13 (Cd or
Hg doping),1φ increases with increasing concentration but remains temperature independent
throughout the incommensurate phase. Thus it appears that this evidence of strong pinning is
site specific, as both smaller (Cu) and bigger (Cd and Hg) ions (compared to Zn) substituted
at the metal site lead to such an effect. The values of the phason gap,1φc, for different
concentrations of the dopants are given in table 1.

It has been observed that substitution at the metal site enhancedTI [26] and suppressed
the lock-in transitionTC considerably. It is seen from table 1 that 3% Cu suppressedTC to
190 K and 3% Hg suppressed it to 184 K (from 192 K for pure Rb2ZnCl4). This shows that the
effect of suppression ofTC is enhanced with increase in the size of the dopant (from Cu to Hg).
Also, for a given dopant, an increase in its concentration suppressesTC further. The value of
the symmetry parameter(m) estimated from equation (18) for the Cu impurity has been found
to be 5, and that for Cd and Hg ism = 4, indicating that Cu, Cd and Hg arerandom-field-type
impurities breaking the symmetry of the host Rb2ZnCl4 and that they provide strong pinning
of the incommensurate modulation wave. A typical fit of the data to equation (18) for a 3%
Cd doping at the Zn site is shown in figure 16.
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Figure 16. The best fit (solid curve) to the experimental data (symbols) used in evaluating the
symmetry parameterm = 4 for Rb2(Zn1−xCdx )Cl4; for x = 0.03.

5.3. Defect pinning at the halogen site in Rb2ZnCl4

The three singularities (ν+, ν− and νφ) observed with Br doping at the halogen site in
Rb2Zn(Cl1−xBrx)4 vary with temperature to giveβ-values similar to that for the pure system
(table 1). It is seen from figure 11 that doping with Br leads to an increase ofT1φ and hence
implies an enhancement of1φ (increasing with increase in the concentration of the dopant). It
is also seen thatT1φ increases slowly starting fromTI , and is temperature dependent throughout
the incommensurate phase. Its temperature dependence increases close to the lock-in transition
temperatureTC . T1A, on the other hand, follows the same temperature dependence as for pure
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Rb2ZnCl4. This variation ofT1φ is indicative of the weak-pinning nature of the substituted
impurity unlike the case for the metal site substitutions. The variation of1φ due to 1% and
3% Br doping relative to pure Rb2ZnCl4 is shown in figure 15. It is seen that1φ increases
with increasing concentration and is temperature dependent throughout the incommensurate
phase.

Substitution at the halogen site suppressesTI [26] unlike metal site substitution. It also
suppressed the lock-in transitionTC . It is seen from table 1 that 1% Br impurity suppressed
TC to 188 K and 3% Br suppressed it to 180 K (from 192 K for pure Rb2ZnCl4), showing that
the effect of the suppression ofTC is enhanced with increase in the size of the anion (from
Cl to Br). Also, increase in the concentration of the Br suppressesTC further.1φc values for
different concentrations of Br are given in table 1. The value of the symmetry parameter (m)
estimated from equation (18) for the Br impurity has been found to bem = 6, indicating that
Br is a random-potential-type impurity and does not break the symmetry of the host Rb2ZnCl4.
A fit for the estimation ofm = 6 from equation (18) for a 1% Br doping at the Cl site is shown
in figure 17.
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Figure 17. The best fit (solid curve) to the experimental data (symbols) used in evaluating the
symmetry parameterm = 6 for Rb2Zn(Cl1−xBrx )4; for x = 0.01.

6. Conclusions

(a) Doping at the metal site (with Cu, Cd or Hg) induced strong pinning of the incommensurate
modulation wave irrespective of the size of the dopant. This probably is the first such
observation with NQR, and strong pinning seems to be site specific at the Zn site.

(b) Substitution of Br at the halogen site has somewhat different effects onTI andTC compared
to substitution of other impurities. This suppressed bothTI andTC , unlike the effect of
doping at the Zn site (TC suppressed andTI enhanced) or at the Rb site (only suppression
of TI ).
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(c) The present study permits a characterization of the various impurities in terms of their
symmetry parameter (random-fieldor random-potentialtype) as well as the nature of the
pinning (strong or weak).
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